Contains and inside relationships within combinatorial pyramids
نویسندگان
چکیده
Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are used within the segmentation framework to encode a hierarchy of partitions. The different graph models used within the irregular pyramid framework encode different types of relationships between regions. This paper compares different graph models used within the irregular pyramid framework according to a set of relationships between regions. We also define a new algorithm based on a pyramid of combinatorial maps which allows to determine if one region contains the other using only local calculus.
منابع مشابه
Hierarchical Watersheds Within the Combinatorial Pyramid Framework
Watershed is one of the most popular tool defined by mathematical morphology. The algorithms which implement the watershed transform generally produce an over segmentation which includes the right image’s boundaries. Based on this last assumption, the segmentation problem turns out to be equivalent to a proper valuation of the saliency of each contour. Using such a measure, hierarchical watersh...
متن کاملConstruction of Combinatorial Pyramids
Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Each vertex of a reduced graph corresponds to a connected set of vertices in the level below. One connected set of vertices reduced into a single vertex at the above level is called the reduction window of this vertex. In the same way, a connected set of vertices in the base level graph reduced to a sin...
متن کاملA First Step toward Combinatorial Pyramids in n-D Spaces
Combinatorial maps define a general framework which allows to encode any subdivision of an nD orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of the objects (either shapes or partitions). Combinatorial pyramids have first be...
متن کاملConnecing Walks and Connecting Dart Sequences for N-d Combinatorial Pyramids Connecting Walks and Connecting Dart Sequences for N-d Combinatorial Pyramids
Combinatorial maps define a general framework which allows to encode any subdivision of an n-D orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of objects (either shapes or partitions). Combinatorial pyramids have first been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 39 شماره
صفحات -
تاریخ انتشار 2006